Deformed WN algebras from elliptic sl(N) algebras

نویسنده

  • J. Avan
چکیده

We extend to the sl(N) case the results that we previously obtained on the construction of Wq,p algebras from the elliptic algebra Aq,p(ŝl(2)c). The elliptic algebra Aq,p(ŝl(N)c) at the critical level c = −N has an extended center containing trace-like operators t(z). Families of Poisson structures indexed by N(N −1)/2 integers, defining q-deformations of the WN algebra, are constructed. The operators t(z) also close an exchange algebra when (−p 1 2 )NM = q−c−N for M ∈ Z. It becomes Abelian when in addition p = qNh where h is a non-zero integer. The Poisson structures obtained in these classical limits contain different q-deformed WN algebras depending on the parity of h, characterizing the exchange structures at p 6= qNh as new Wq,p(sl(N)) algebras. Résumé Nous étendons au cas sl(N) les résultats que nous avons obtenus précédemment concernant la construction des algèbres Wq,p à partir de l’algèbre elliptique Aq,p(ŝl(2)c). L’algèbre elliptique Aq,p(ŝl(N)c) au niveau critique c = −N possède un centre étendu contenant des opérateurs de trace t(z). On construit sur ce centre des familles de structures de Poisson indicées par N(N − 1)/2 entiers, définissant des q-déformations de l’algèbre WN . Les opérateurs t(z) engendrent une algèbre d’échange lorsque (−p 1 2 )NM = q−c−N où M ∈ Z. Cette algèbre devient abélienne si de plus p = qNh avec h entier non nul. Les structures de Poisson obtenues dans ces limites classiques contiennent différentes algèbres WN q-déformées dépendant de la parité de l’entier h, caractérisant les structures d’échange à p 6= qNh comme de nouvelles algèbres Wq,p(sl(N)). ENSLAPP-AL-670/97 PAR-LPTHE 97-49 math.QA/9801105 December 1997

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q-deformed W-algebras and elliptic algebras

The elliptic algebra Aq,p(ŝl(N)c) at the critical level c = −N has an extended center containing trace-like operators t(z). Families of Poisson structures, defining q-deformations of the WN algebra, are constructed. The operators t(z) also close an exchange algebra when (−p1/2)NM = q−c−N for M ∈ Z. It becomes Abelian when in addition p = qNh where h is a non-zero integer. The Poisson structures...

متن کامل

Universal construction of Wq,p algebras

We present a direct construction of abstract generators for q-deformed WN algebras. This procedure hinges upon a twisted trace formula for the elliptic algebra Aq,p(ŝl(N)c) generalizing the previously known formulae for quantum groups. MSC number: 81R50, 17B37 LAPTH-690/98 PAR-LPTHE 98-38 math.QA/9807048 July 1998

متن کامل

Central extensions of classical and quantum q-Virasoro algebras

We investigate the central extensions of the q-deformed (classical and quantum) Virasoro algebras constructed from the elliptic quantum algebra Aq,p(sl(N))c. After establishing the expressions of the cocycle conditions, we solve them, both in the classical and in the quantum case (for sl(2)). We find that the consistent central extensions are much more general that those found previously in the...

متن کامل

On Leave of Absence from Laboratoire De Physique Théorique Enslapp

We construct operators t(z) in the elliptic algebra Aq,p(ŝl(2)c). They close an exchange algebra when pm = qc+2 for m ∈ Z. In addition they commute when p = q2k for k integer non-zero, and they belong to the center of Aq,p(ŝl(2)c) when k is odd. The Poisson structures obtained for t(z) in these classical limits are identical to the q-deformed Virasoro Poisson algebra, characterizing the exchang...

متن کامل

Beyond CFT : Deformed Virasoro and Elliptic Algebras

In this lecture we discuss ‘beyond CFT’ from symmetry point of view. After reviewing the Virasoro algebra, we introduce deformed Virasoro algebras and elliptic algebras. These algebras appear in solvable lattice models and we study them by free field approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998